Gap Between Operator Norm and Spectral Radius for the Square of Antidiagonal Block Operator Matrices

نویسندگان

چکیده

In this work, the gap between operator norm and spectral radius for square of antidiagonal block matrices in direct sum Banach spaces has been investigated, also numerical same Hilbert studied.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further inequalities for operator space numerical radius on 2*2 operator ‎matrices

‎We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$‎, ‎when $X$ is a numerical radius operator space‎. ‎These inequalities contain some upper and lower bounds for operator space numerical radius.

متن کامل

Spectral properties of unbounded JJ-self-adjoint block operator matrices

We study the spectrum of unbounded J-self-adjoint block operator matrices. In particular, we prove enclosures for the spectrum, provide a sufficient condition for the spectrum being real and derive variational principles for certain real eigenvalues even in the presence of non-real spectrum. The latter lead to lower and upper bounds and asymptotic estimates for eigenvalues. AMS Subject classifi...

متن کامل

Spectral gap estimates for some block matrices

We estimate the size of the spectral gap at zero for some Hermitian block matrices. Included are quasi-definite matrices, quasi-semidefinite matrices (the closure of the set of the quasi-definite matrices) and some related block matrices which need not belong to either of these classes. Matrices of such structure arise in quantum models of possibly disordered systems with supersymmetry or graph...

متن کامل

Ela Bounds for the Spectral Radius of Block H-matrices∗

Simple upper bounds for the spectral radius of an H-matrix and a block H-matrix are presented. They represent an improvement over the bounds in [T.Z. Huang, R.S. Ran, A simple estimation for the spectral radius of (block) H-matrices, Journal of Computational Applied Mathematics, 177 (2005), pp. 455–459].

متن کامل

Spectral Radius of the Sampling Operator with Continuous Symbol

Abstract. Let φ(θ) ∼ ∑∞ −∞ ake ikθ (where ak is the k-th Fourier coefficient of φ) be a bounded measurable function on the unit circle T. Consider the operator Sφ(m,n) on L2(T) whose matrix with respect to the standard basis { eikθ : k ∈ Z } is given by (ami−nj )i,j∈Z. In this paper, we give upper and lower bound estimation for r(Sφ(m,n)), the spectral radius of Sφ(m,n). Furthermore, we will sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in advanced mathematical sciences

سال: 2022

ISSN: ['2651-4001']

DOI: https://doi.org/10.33434/cams.1022686